بخشی از متن:
چکیده:
امروزه در دانش پزشکی جمع آوری داده های فراوان در مورد بیماری های مختلف از اهمیت فراوانی برخوردار است. مراکز پزشکی با مقاصد گوناگونی به جمع آوری این داده ها می پردازند. تحقیق روی این داده ها و به دست آوردن نتایج و الگوهای مفید در رابطه با بیماری ها ، یکی از اهداف استفاده از این داده ها است. حجم زیاد این داده ها و سردرگمی حاصل از آن مشکلی است که مانع رسیدن به نتایج قابل توجه می شود. بنابراین از داده کاوی برای غلبه بر این مشکل و به دست آوردن روابط مفید بین عوامل خطر زا در بیماری ها استفاده می شود.
این مقاله به معرفی داده کاوی وکاربردآن در صنعت پزشکی (پیش بینی بیماری) با استفاده از الگوریتم های داده کاوی به همراه نرم افزارهای مرتبط با آن پرداخته است.
کلمات کلیدی: داده کاوی، درخت تصمیم، پیش بینی بیماری، دیابت
فهرست مطالب:
چکیده
مقدمه
بیان مسئله
هدف تحقیق
موضوع داده کاوی چیست؟
مدیریت ذخیره سازی و دستیابی اطلاعات
تعاریف داده کاوی
کاربردهای داده کاوی
چند مثال در مورد مفهوم داده کاوی
مراحل داده کاوی
شکل 1: مراحل داده کاوی
عناصر داده کاوی
تکنیک های داده کاوی
تکنولوژی های مرتبط با داده کاوی
محدودیت ها
داده کاوی درعرصه ی سلامت
استراتژی های داده کاوی
نمونه هایی از کاربرد های داده کاوی درسلامت
مقایسه الگوریتمهای هوشمند در شناسایی بیماری دیابت
گام های لازم برای طراحی یک درخت تصمیم گیری
جذابیت درختان تصمیم
بازنمایی درخت تصمیم
مسائل در یادگیری درخت تصمیم
مزایای درختان تصمیم نسبت به روش های دیگر داده کاوی
معایب درختان تصمیم
نرم افزارهای داده کاوی
پیاده سازی نرم افزار وکا
شکل 2: نمودار ستونی برای فراوانی مقادیرمختلف ستون ها در بازه هایی با طول یکسان
شکل 4: اجرای الگوریتم Decision Trees
شکل 5: اجرای مدل خوشه بندی
بحث
نتیجه گیری
پیشنهادات
منابع
بخشی از متن:
بخشی از مقدمه:
ما به تدریج با این واقعیت رشد کرده ایم که حجم عظیمی از داده ها وجود دارد که کامپیوترها، شبکه ها و در حقیقت تمام زندگی مارا فرا گرفته است. سازمان های دولتی، مؤسسات علمی و تجاری ،سرمایه هنگفتی را برای جمع آوری و ذخیره این داده ها اختصاص داده اند. در حالی که فقط مقدار کمی از این داده ها مورد استفاده قرار می گیرند. زیرا، در بسیاری از موارد، حجم داده های لازم برای سازماندهی بسیار بالا بوده یا ساختار آن ها بسیار پیچیده است.
ضرورت درک مجموعه داده های بزرگ، پیچیده و اطلاعات کامل و غنی در زمینه تجارت،علوم و مهندسی کم و بیش رایج است. توانایی استخراج دانش و اطلاعات مفید موجود در این داده ها و امکان استفاده از این دانش در جهان رقابتی امروز بیش از پیش حائز اهمیت است. به کل فرآیند به کارگیری متدولوژی مبتنی بر کامپیوتر از جمله روش های جدید برای دریافت دانش و اطلاعات از داده ها را داده کاوی می گویند.
داده کاوی دراواخر دهه 1980پدیدار گشت در سال 1990گام های بلندی دراین شاخه ازعلم برداشته شد. درزمانی طلا یازغال سنگ ارزشمند ترین چیزی بودند که انسان ها برای بالا بردن کیفیت زندگی شان به جستجو آن می پرداختند. دردنیای امروزه داده ها حکم طلا را دارند و با ارزش ترین ماده خام دنیای کنونی محسوب می شوند.
اصطلاح داده کاوی برگرفته از (gold mining) یا استخراج طلا از صخره های سنگی است. در رابطه با استخراج و اکتشاف طلا از واژه Rock mining استفاده نشده است و بنابراین شاید نام مناسب برای Data mining نیز واژه Knowledge mining frim data بود اما از انجا که این واژه طولانی بود ازواژه Data mining استفاده می شود. ...
فهرست مطالب:
فصل اول مفاهیم داده کاوی
1-1 مقدمه
1-2 ریشه های داده کاوی
1-3 برای انجام داده کاوی به چه چیزهایی نیاز است
1-4 فرآیندداده کاوی
1-5 عناصر داده کاوی
1-6 روش های داده کاوی
1-7 مراحل اصلی داده کاوی
1-8 فنون داده کاوی
1-9 دلایل استفاده از داده کاوی
1-10 استراتژی های داده کاوی
1-11 تکنیک های داده کاوی
1-12 ضرورت داده کاوی
1-13 کارکردها ووظایف داده کاوی
1-14 کاربردهای داده کاوی
1-15 مثالی کلاسیک از داده کاوی
1-16 فواید ونقش داده کاوی درفعالیت شرکت ها
1-17 نمونه های اجرایی داده کاوی
7-1- درزمینه صنعت
7-3- در مدیریت ریسک
1-18 انبار های داده
1-19روش آنالیز آماری
1-20 تفاوت داده کاوی وآنالیزهای آماری
فصل دوم: آماده سازی داده ها
2-1 نمایش داده های خام
2-2 ویژگی های داده های اولیه(خام)
2-3 تبدیل داده های خام
2-4 تحلیل داده های نا منطبق
فصل سوم: روشهای آمار
3-1 استنتاج آماری
3-2 تشخیص تفاوت ها درمجموعه داده
3-3 رگرسیون پیشگو
3-4 تحلیل واریانس
3-5 تحلیل ممیز خطی
فصل چهارم: درختان تصمیم و قوانین تصمیم
4-1 مقدمه
4-2 درخت تصمیم
4-3 الگوریتمc4.5 :تولیددرخت تصمیم
4-4 مقادیرویژگی ناشناخته
4-5 هرس کردن درخت تصمیم
4-6 تولید قوانین تصمیم
4-7 محدودیتهای درختان تصمیم وقوانین تصمیم
فصل پنجم: قوانین انجمنی
5-1 مقدمه
5-2 تحلیل سبدخرید
5-3 الگوریتم APRIORI
5-4 مجموعه اقلام های تکراری وروابط انجمنی
5-5 افزایش راندمان وکارایی الگوریتمApriori
5-6 کاوش قوانین انجمنی چند بعدی
5-7 کاوش وب( وب کاوی )
5-8 کاوش متن
فصل ششم: شبکه های عصبی مصنوعی
6-1 مقدمه
6-2 مدل یک نورون مصنوعی
6-3 معماری های شبکه های عصبی مصنوعی
6-4 فرآیندیادگیری
6-5 وظایف یادگیری
6-6 مفاهیم چندلایه ای
6-7 شبکه های رقابتی ویادگیری رقابتی
فصل هفتم: الگوریتم های ژنتیک
7-1 اصول الگوریتم ژنتیک
7-2پیوندزنی
7-3 نمایش ساده ای برای یک الگوریتم ژنتیک
فصل هشتم: روشهای تجسم سازی
8- 1 ادراک وتجسم ساز ی فکری
8-2تجسم سازی علمی وتجسم سازی اطلاعات
8-3 سیستم های تجسم سازی برای داده کاوی
نتیجه گیری
منابع
بخشی از متن:
چکیده:
داده کاوی، استخراج اطلاعات و دانش و کشف الگوهای پنهان از یک پایگاه داده های بسیار بزرگ، کاربردهای زیادی در کسب و کارهای امروزی پیدا کرده است. استفاده از تکنیک های داده کاوی در سازمان ها منتج به تعداد زیادی قانون و الگو می شود که با توجه به محدودیت در منابع و بودجه، پیاده سازی همه ی آنها امکان پذیر نمی باشد. می توان گفت که ارزیابی و رتبه بندی قوانین وابستگی کاری مهم و چالش برانگیز است. با استفاده از از تکنیک ناپارامتریک تحلیل پوششی داده ها به ارائه چارچوبی برای ارزیابی و اولویت بندی قوانین وابستگی می پردازیم. در این تحقیق ابتدا مدلی برای شناسایی کاراترین واحد تصمیم گیری در حالت بازده متغیر به مقیاس ارائه می شود. پس از آن، با استفاده این مدل، متدی نوین جهت رتبه بندی واحدهای تصمیم گیری ارائه می شود. سپس با استفاده از مدل و متد پیشنهادی، چارچوبی نوین جهت رتبه بندی قوانین وابستگی داده کاوی توسعه داده می شود. در انتها، با پیاده سازی چارچوب پیشنهادی برای اولویت بندی قوانین وابستگی داده کاوی در بانک کشاورزی کاربردپذیری چارچوب پیشنهادی نشان داده می شود.
کلمات کلیدی: فناوری اطلاعات (IT)، الگوهای پنهان، داده کاوی (Data Mining)، تکنیک های داده کاوی، قوانین داده کاوی
فهرست مطالب:
چکیده
مقدمه ای بر دادهکاوی
فصل اول: داده کاوی
1-1 چه چیزی سبب پیدایش داده کاوی شده است؟
1-2 مراحل کشف دانش
1-3 جایگاه داده کاوی در میان علوم مختلف
1-4 داده کاوی چه کارهایی نمی تواند انجام دهد؟
1-5 داده کاوی و انبار داده ها
1-6 داده کاوی و OLAP
1-7 کاربرد یادگیری ماشین و آمار در داده کاوی
1-8 توصیف داده ها در داده کاوی
1-8-1 خلاصه سازی و به تصویر در آوردن داده ها
1-8-2 خوشه بندی
1-8-3 تحلیل لینک
فصل دوم: پیش بینی دادها
2-1 مدل های پیش بینی داده ها
2-1-1 Classification
2-1-2 Regression
2-1-3 Time Series
2-2 مدل ها و الگوریتم های داده کاوی
2-2-1 شبکه های عصبی
2-2-2 Decision Trees
2-2-3 Multivariate Adaptive Regression Splines(MARS)
2-2-4 Induction Rule
2-2-5 (MBR) Earest Neibour and Memory-Based Reansoning -K
2-2-6 رگرسیون منطقی
2-2-7 تحلیل تفکیکی
2-2-8 مدل افزودنی کلی (GAM)
2-2-9 Boosting
فصل سوم انتخابها
3-1 سلسله مراتب انتخابها
3-2 کاربرد علم آمار در داده کاوی
3-2-1 مقدمه و مقایسه
3-2-2 کاربردهای روشهای آماری
3-3 پیش بینی (Prediction)
3-4 نگاه عمیق تر به شبکه عصبی
3-4-1 سابقه تاریخی
3-4-2 شبکه های عصبی در مقابل کامپیوتر های معمولی
3-4-3 چرا از شبکه های عصبی استفاده می کنیم؟
3-4-4 تفاوتهای شبکههای عصبی با روشهای محاسباتی متداول و سیستمهای خبره
3-3-5 کاربردهای شبکه های عصبی
3-4 آشنایی با الگوریتم ژنتیک
3-5 الگوریتم مورچگان
3-5-1 کاربردهای الگوریتم مورچگان
فصل چهارم: داده کاوی در سازمانها
4-1 کاربردهای داده کاوی در کتابخانه ها و موسسات دانشگاهی
4-1-1 دیتامارت
4-2 عناصر داده کاوی
4-2-1 نرم افزار:
4-3 کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی
4-4 مدیریت موسسات دانشگاهی
فصل پنجم: نتیجه گیری و پیشنهادها
منابع و مراجع